ELSEVIER

Contents lists available at ScienceDirect

# **Catalysis Today**

journal homepage: www.elsevier.com/locate/cattod



# Nanofibrous Pt-Ba Lean $NO_x$ trap catalyst with improved sulfur resistance and thermal durability

I.S. Pieta<sup>a,b</sup>, W.S. Epling<sup>b,\*</sup>, M. García-Diéguez<sup>a</sup>, J.Y. Luo<sup>b</sup>, M.A. Larrubia<sup>a</sup>, M.C. Herrera<sup>a</sup>, L.J. Alemany<sup>a,\*\*</sup>

- <sup>a</sup> Department of Chemical Engineering, Faculty of Science, University of Malaga, Campus of Teatinos, 29071, Malaga, Spain
- <sup>b</sup> Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

#### ARTICLE INFO

Article history:
Received 19 October 2010
Received in revised form 28 January 2011
Accepted 26 February 2011
Available online 8 April 2011

Keywords: NO<sub>x</sub> storage Pt-Ba/Al<sub>2</sub>O<sub>3</sub> Thermal durability Sulfur resistance

#### ABSTRACT

Different LNT catalysts, prepared using  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, nanofibrous Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>-modified nanofibrous Al<sub>2</sub>O<sub>3</sub> supports, with Ba as the storage component and Pt as the oxidation component, have been prepared and NO<sub>x</sub> uptake behaviour was examined between 523 and 823 K. The activity study was accompanied by TEM, XRD and H<sub>2</sub> chemisorption characterization. The Pt-Ba nanofibrous Al<sub>2</sub>O<sub>3</sub>-supported catalyst resulted in the best performance, likely due to better Pt dispersion. This included improved storage capacity as well as more efficient reduction during the regeneration phase. This catalyst also had better performance after identical S exposures and after desulfurization. Ti modification had significant impact on sample thermal durability and general catalyst performance. Results using the Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> nanofibrous catalyst reveal that this catalyst has improved thermal degradation resistance properties relative to standard  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Ti incorporation in the nanofibrous Al structure was found to also promote sulfur desorption. Above 1073 K, where complex Ba<sub>x</sub>Ti<sub>y</sub>O<sub>z</sub>, and/or Ba<sub>x</sub>Al<sub>y</sub>Ti<sub>z</sub>O<sub>n</sub> structures form, the Ba-Ti interaction was found to have a destabilizing effect on stored nitrites/nitrates.

© 2011 Elsevier B.V. All rights reserved.

## 1. Introduction

 $NO_x$  storage/reduction catalysts (NSR or lean  $NO_x$  trap – LNT) are being investigated and used to meet current and forthcoming Euro and EPA emission standards for lean-burn engines [1–6]. Since the NSR principle was first reported by Toyota [3,7,8], a large number of studies investigating various NSR catalysts have been published [6,9–12]. One of the most commonly studied NSR catalyst compositions is the Pt-Ba system supported on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, as first discussed by Toyota [12–14]. Many studies have been performed with such a standard formulation; Pt:AE:Al<sub>2</sub>O<sub>3</sub>  $\approx$  1:20:100 (AE – alkali or alkaline earth element); however, there is still a need to improve the catalyst's thermal durability and sulfur tolerance, which are primary drawbacks of the NSR catalysts, hindering more widespread commercial application [15].

NSR catalysts normally operate in the 473-673 K temperature range. Above this temperature, the  $NO_x$  storage capacity is limited by thermal stability of the trapped nitrites/nitrates [12,16,17]. However, during normal engine operation some event may provoke a sudden, uncontrolled increase in temperature along the

catalyst, i.e. combustion of soot accumulated in a diesel particulate filter (DPF) placed upstream with respect to the NSR catalyst, increasing the exhaust gas temperature to induce the onset of soot oxidation if the DPF is downstream, or simply high torque driving conditions. However, due to S accumulation on an NSR catalyst, intermittent high temperature exposure is also required to regenerate the catalyst, i.e. remove the S species for regenerated efficiency. In order to induce S release, the working temperature of the catalyst needs to exceed 873 K for most formulations. Previous data indicate that the high temperatures required for desulfurization result in thermal degradation of NO<sub>x</sub> traps [18,19]. Thermal degradation includes precious metal sintering [20,21], trapping material sintering [13], as well as reaction between the trapping material and alumina support [13,18]. Despite the continuous reduction in sulfur concentration in refined fuels and modifications in NSR catalyst formulations, which often target improved sulfur tolerance, sulfur poisoning remains a key issue in NSR application [2,22-25]. Taking into account the stability of sulfates on the NSR trapping component, new NSR formulations need to be developed that are more S resistant or release S at lower temperatures. As an added complication, although not required, when S is released from the catalyst under rich conditions, H2S formation would be undesired due to the associated odor at rather low concentrations. Furthermore, new formulations that preserve trapping efficiencies at high temperatures would expand their applicability as well as maintain NO<sub>x</sub> removal performance during desulfurization events [26].

<sup>\*</sup> Corresponding author.

<sup>\*\*</sup> Corresponding author. Fax: +34 952131919.

E-mail addresses: wepling@uwaterloo.ca (W.S. Epling), luijo@uma.es (L.J. Alemany).

There are a few studies directed at high-temperature NSR catalysts, and the possible reactions that may occur between the NO<sub>x</sub> storage compound and support at high temperatures, e.g.,  $BaO + Al_2O_3 \rightarrow BaAl_2O_4$  [26–29]. Enhanced  $NO_x$  storage capacity at high temperature has been reported for a Pt-K/MgAl<sub>2</sub>O<sub>4</sub> catalyst [30]. A novel Pt/K2Ti2O5 catalyst has also been reported as a high-temperature NSR catalyst [26]. It was found that the adsorbed NO<sub>x</sub> on Pt/K<sub>2</sub>Ti<sub>2</sub>O<sub>5</sub> was much more stable than that trapped over Pt-K/TiO<sub>2</sub>. Mechanistic studies revealed that KNO<sub>3</sub>like compounds were formed after NO<sub>x</sub> adsorption, and that the NO<sub>x</sub> storage and reduction process on K<sub>2</sub>Ti<sub>2</sub>O<sub>5</sub> was accompanied by a structural transformation between K<sub>2</sub>Ti<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>Ti<sub>6</sub>O<sub>13</sub>. Although K as the trapping component can result in considerable NO<sub>x</sub> storage capacity, and TiO<sub>2</sub> is accepted as relatively resistant to sulfur poisoning [12,31], previous studies report better performance using a Ba-based rather than the K-based NSR catalyst [12.31].

In this study, the activity of a novel nanofibrous Pt-Ba/Al<sub>2</sub>O<sub>3</sub> catalyst for NO<sub>x</sub> removal at high temperature is reported. The aim of the present work is the development of a thermally stable NSR catalyst supported on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> modified with additional components, which may also increase the sulfur tolerance of the material.

#### 2. Materials and methods

#### 2.1. Catalyst preparation and characterization

Synthesized nanostructured y-Al<sub>2</sub>O<sub>3</sub> (denoted Al<sub>NF</sub>) and nanostuctured  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>-TiO<sub>x</sub> (denoted Al-Ti) were used as supports. The preparation procedure has been described in detail elsewhere [32,33]. An aqueous NaAlO<sub>2</sub> solution was added dropwise to a 5 N acetic acid solution. The obtained precipitate was decanted, filtered and washed with water. The resulting powder was dried overnight at 373 K and subsequently mixed with a non-ionic surfactant, Tergitol (15-TS-5, Sigma), using a Tergitol/Al ratio of 0.5. The mixture was kept in an autoclave for 72 h at 373 K and later calcined at 773 K for 20 h. The same preparation procedure was applied to obtain nanostructured Al-Ti, but with the addition of TiCl<sub>3</sub> as a precursor (12% TiCl<sub>3</sub> in hydrochloric acid, Sigma). Both, Al- and Ti-precursors were added dropwise simultaneously to the acetic acid solution. The Tergitol/(Al + Ti) ratio was 0.5. The autoclaved mixture was calcined at 623 K for 2 h and the temperature was then increased at 5 K min<sup>-1</sup> to 773 K and maintained at 773 K for 18 h. In case of sample treated at 1073 K or 1273 K, the additional calcination was performed with a previous calcined catalyst sample for 1 h.

The Pt and Ba components were added via the incipient wetness impregnation method using diamminedinitroplatinum (II) (Pt(NH<sub>3</sub>)<sub>2</sub>(NO<sub>2</sub>)<sub>2</sub>, Aldrich) and barium acetate (Ba(CH<sub>3</sub>COO)<sub>2</sub>, MERCK) as precursors. The catalyst formulations are summarized in Table 1. The metal loading is expressed as formal surface atomic density (atoms per nanometer square, at nm $^{-2}$ ) for comparison in terms of surface coverage. First Pt (0.4 at nm $^{-2}$ ; 0.4Pt/Al<sub>NF</sub>, 0.4Pt/Al-Ti) catalysts were prepared by impregnation of the Al<sub>NF</sub> and Al-Ti supports with an aqueous solution of Pt, drying overnight at room temperature and calcination for 3 h at 648 K in air. These were then impregnated with Ba (4 at nm $^{-2}$  of Ba) to obtain the final formulations (0.4Pt-4Ba/Al<sub>NF</sub>, 0.4Pt-4Ba/Al-Ti). The final calcination was performed for 5 h at 798 K in air.

The Pt-Ba/Al- $Ti_{MF}$  physical mixture was prepared by mixing the prepared 0.4Pt-4Ba/Al<sub>NF</sub> catalyst with rutile  $TiO_2$  powder (Sigma–Aldrich, 99.7% purity, used as received) in a 9:1 ratio. The standard Pt-Ba/Al<sub>2</sub>O<sub>3</sub> catalyst, denoted as Pt-Ba<sub>ST</sub>, has been described in detail elsewhere along with its preparation procedure [12].

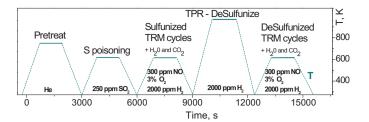



Fig. 1. S poisoning experiment scheme.

The TEM images of powder samples deposited onto a copper mesh grid coated with a carbon film were taken with a Philips CM200 (200 kV) microscope equipped with an EDX (energy dispersive X-ray) detector. The XRD patterns of the powder samples were recorded with a Siemens D-501 goniometer equipped with a Johansson type monochromator with a Ge(111) crystal. During measurement, Cu K $\alpha$ 1 radiation and a fixed power source (45 kV and 35 mA) were used.

 $N_2$  adsorption–desorption isotherms for the Al $_{NF}$  and Al-Ti supports were obtained at 77 K using a Beckman Coulter SA3100 Surface Area Analyzer. Before the analysis, the samples were outgassed in vacuum (1  $\times$  10 $^{-3}$  Pa) for 5 h at 453 K. The specific surface area was obtained by the BET isotherm equation and the pore volume by the Barrett–Joyner–Halenda (BJH) method from the desorption branch of the isotherm.

 $H_2$  chemisorption experiments were carried out in the pulse mode in a Hiden CATLAB microreactor module connected to a Hiden QIC-20 gas analysis system. Prior to  $H_2$  chemisorption, each sample was heated from room temperature (RT) to 723 K in the presence of  $H_2$  (5%  $H_2$  in He). The sample was then reduced in this mixture at 723 K for 30 min, and then purged in a He flow. Next, the temperature was decreased to RT and the chemisorption measurements were performed at ca. 310 K. For each experiment, 27 pulses of  $H_2$ -containing gas were injected into the reactor (100  $\mu$ l of 5%  $H_2$  in He each pulse). For calculation purposes, a stoichiometry relation of two platinum sites per one  $H_2$  molecule was used [34].

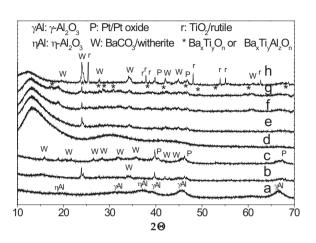
#### 2.2. Transient response method (TRM)

TRM runs were performed in a quartz tube reactor connected to a Pfeiifer Prisma<sup>TM</sup> QMS 200 mass spectrometer or in a CAT-LAB microreactor module connected to a Hiden QIC-20 gas analysis system. The method was used to study the NO<sub>x</sub> storage–reduction process over the catalysts between 473 and 773 K with a total gas flow of 100 ml min $^{-1}$  using 60 or 40 mg of catalyst (GHSV =  $1.5\times10^5$  (or  $1\times10^5$ ) h $^{-1}$ , at 1 atm and 293 K). A rectangular pulse of NO (1000 ppm or 300 ppm)+O2 (3%) in He flow followed by a H2 (2000 ppm) in He flow were fed during the oxidation and reduction steps, respectively. For experiments with H2O and CO2, 2.5% H2O and 5% CO2 were continuously fed to the microreactor. For all experiments, the N-balance closed with a deviation between 4% and 5%.

# 2.3. Sulfur poisoning study

The sulfur poisoning study was performed in the CATLAB microreactor system. The general experiment scheme is presented in Fig. 1. First, catalyst sulfation was carried out at 623 K for 30 min with a gas mixture containing 250 ppm  $SO_2$ , 5%  $O_2$  and a He balance. Then the catalyst was cooled to RT in He and afterwards  $NO_X$  storage–reduction measurements and analysis of sulfur-poisoned catalysts were performed using a conventional TRM protocol. The content of  $H_2O$  and  $CO_2$  in the gas stream during TRM cycles was 2.5 and 5%, respectively. Next, temperature–programmed reduction

**Table 1**Catalyst formulation details (NF – nanofibrous, MF – physical mixture).


| Catalyst                                                                            | Description               | Pt (wt.%) | Ba (wt.%) | Al <sub>2</sub> O <sub>3</sub> (wt.%) | TiO <sub>2</sub> (wt.%) |
|-------------------------------------------------------------------------------------|---------------------------|-----------|-----------|---------------------------------------|-------------------------|
| 0.4Pt-4Ba/γ-Al <sub>2</sub> O <sub>3</sub> [12]                                     | Pt-Ba <sub>ST</sub>       | 2         | 20        | 78                                    | _                       |
| $\gamma$ -Al <sub>2</sub> O <sub>3NF</sub>                                          | Al <sub>NF</sub>          | _         | -         | 100                                   | _                       |
| 0.4Pt-4Ba/γ-Al <sub>2</sub> O <sub>3NF</sub>                                        | Pt-Ba/Al <sub>NF</sub>    | 3.8       | 25        | 71.2                                  | _                       |
| γ-Al <sub>2</sub> O <sub>3</sub> -TiO <sub>2NF</sub>                                | Al-Ti                     | _         | _         | 90                                    | 10                      |
| $0.4$ Pt- $4$ Ba/ $\gamma$ -Al <sub>2</sub> O <sub>3</sub> -TiO <sub>2NF</sub>      | Pt-Ba/Al-Ti               | 2.3       | 20        | 69.9                                  | 7.8                     |
| $0.4$ Pt- $4$ Ba/ $\gamma$ -Al <sub>2</sub> O <sub>3 NF</sub> + TiO <sub>2 MF</sub> | Pt-Ba/Al-Ti <sub>MF</sub> | 2.3       | 20        | 69.9                                  | 7.8                     |

(TPR) was performed. The catalyst was desulfurized in rich conditions (2000 ppm  $H_2$  in He) while ramping from RT to 1023 (or 923) K and afterwards  $NO_X$  conversion was evaluated.

#### 3. Results and discussion

#### 3.1. Catalyst characterization

The properties of Pt-BaST have been described in detail elsewhere [12]. The measured specific surface area  $(A_{\rm BET})$  and pore volume  $(V_p)$  of the pure  $Al_{NF}$  support were  $300 \,\mathrm{m}^2\,\mathrm{g}^{-1}$  and 1 cm<sup>3</sup> g<sup>-1</sup>, respectively. For the Al-Ti support,  $A_{BET} = 160 \text{ m}^2 \text{ g}^{-1}$  and  $V_p = 0.4 \,\mathrm{cm}^3 \,\mathrm{g}^{-1}$ . TEM images of the fresh Al<sub>NF</sub> and Al-Ti supports and also Pt-Ba/Al<sub>NF</sub>, Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> catalysts before the TRM tests are shown in Fig. 2. For both the Al<sub>NF</sub> and Al-Ti supports, a nanofibrous structure was obtained (Fig. 2a and c). For Pt-Ba/Al<sub>NF</sub>, Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> catalysts (Fig. 2b, d, and e), several types of crystallites are observed. The nanofibers correspond to the Al or Al-Ti phase, while bulky, massive crystallites of Ba carbonate are also present. In general, for the Pt-Ba/Al-Ti catalyst, Ti is well incorporated in the Al nanofibers, however, some spherical crystallites corresponding to TiO<sub>2</sub> were detected. The round-like, dark crystallites correspond to Pt (the presence of Pt was also detected by EDX analysis performed during the TEM study). In contrast, TiO<sub>2</sub> (rutile) is present as well-shaped spheres with lower dark contrast, which are clearly seen for Pt-Ba/Al-Ti<sub>MF</sub> (Fig. 2e). For all prepared materials, Pt forms rather small particles; however, there is no homogeneity in the particle size. Some large



**Fig. 3.** XRD patterns of the materials after being calcined at  $1073 \, \text{K}$ ; (a)  $Al_{NF}$ , (b) Pt-Ba/Al<sub>NF</sub> BR, (c) Pt-Ba/Al<sub>NF</sub> AR, (d) Al-Ti, (e) Pt-Ba/Al-Ti BR, (f) Pt-Ba/Al-Ti AR, (g) Pt-Ba/Al-Ti calcined at  $1273 \, \text{K}$  and (h) physical mixture of Pt-Ba/Al-Ti<sub>MF</sub> BR. TRM conditions –  $1000 \, \text{ppm}$  of  $NO_v$  + 3% of  $O_v$  in He, T = 623 K.

Pt crystallites, ca. 20–30 nm, can also be observed (Fig. 2b and d). The average Pt size diameter was ca. 5 and 12 nm for the Pt-Ba/Al $_{\rm NF}$  and Pt-Ba/Al-Ti samples, respectively. The dispersion of Pt for those catalysts was 37 and 18%. The Pt dispersion of Pt-Ba $_{\rm NT}$  was ca. 20%.

The XRD patterns obtained from the  $Al_{NF}$  and Al-Ti supports and also Pt-Ba/ $Al_{NF}$ , Pt-Ba/Al-Ti and Pt-Ba/Al-Ti $_{MF}$  catalysts before (BR) and after reaction (AR) are presented in Fig. 3. Diffractograms from

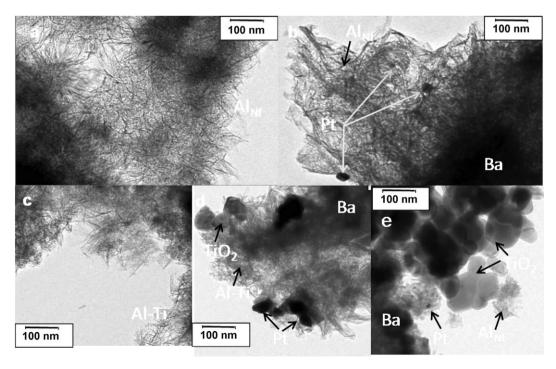



Fig. 2. TEM images of (a) Al<sub>NF</sub> nanofiber support, (b) Pt-Ba/Al<sub>NF</sub>, (c) Al-Ti nanofiber support, (d) Pt-Ba/Al-Ti and (e) the physical mixture of Pt-Ba/Al-Ti<sub>MF</sub>.

both supports (Fig. 3a and d) have the characteristic γ-alumina signals (JCPDS 75-0921). Additionally, for Al-Ti a broad feature in the low  $2\theta$  region was detected, which corresponds to very small crystallite sizes of the nanofiber structure. Peaks related to Pt and PtO (JCPDS 70-2431 and JCPDS 83-1997), were detected to only some extent, because these signals are in most cases overshadowed by intense  $\gamma$ -alumina features. For the Ba-containing samples, witherite (BaCO<sub>3</sub> JCPDS 5-0378) was the Ba-dominant phase both before and after TRM tests. The XRD data revealed that most likely two Ba species are present on the calcined catalysts. Some of the Ba is probably not detected by XRD indicating high Ba dispersion on the catalysts, which has been described previously as a 'monolayer' [35,36]. For fresh Pt-Ba/Al<sub>NF</sub> and Pt-Ba/Al-Ti<sub>MF</sub> catalysts before reaction only a fraction of Ba forms the XRD detected bulk BaCO<sub>3</sub> phase. For the Pt-Ba/Al-Ti catalyst, both before and after reaction, an intense signal at  $\theta$  = 24.1° and several other peaks in the higher  $2\theta$  region, associated with an orthorhombic BaCO<sub>3</sub> phase (witherite), indicate large Ba-carbonate crystal formation. These results are in line with previous studies, where the different Ba species on the surface of similar catalysts have been reported [37,38]. The rutile phase (JCPDS 78-2485) was only clearly observed in the case of Pt-Ba/Al-Ti<sub>MF</sub>.

The comparison of XRD patterns of the BR and AR catalysts suggests that some structural changes occur during the TRM tests. It is worth noting that the Pt-Ba/Al-Ti sample changes less compared to the Pt-Ba/Al<sub>NF</sub>, which suggests that the Al-Ti support results in better thermal durability than AlNF, thereby preventing thermally induced material changes and Pt sintering. In general, for Ba-containing samples after reaction, multiple peaks in the whole XRD pattern range indicate the presence of the witherite phase. It is also worth pointing out that for Pt-Ba/Al-Ti (Fig. 3e-g) there were no peaks detected which indicate interaction between Ba and Ti phases at temperatures below exposure at 873 K, in agreement with previous observations [39]. However, such an interaction was observed when the Pt-Ba/Al-Ti catalyst was exposed to temperatures higher than 1073 K, with an example of data obtained after calcining at 1273 K shown in Fig. 3g. In terms of K-containing systems, this kind of interaction between Ti and the alkali-phase was observed previously, where the full transformation into potassium titanate was observed after sample treatment at 1123 K for 10 h [26]. In contrast, for the Ba-based system this transformation starts at a slightly lower temperature.

For the samples after reaction, Pt became easier to detect, probably due to Pt sintering and bigger cluster formation, especially for Pt-Ba/Al<sub>NF</sub>. For the Pt-Ba/Al-Ti catalyst, the initially good dispersion of Pt remains unchanged at TRM conditions up to 873 K. Maintaining the good dispersion implies maintaining the proximity of the Pt sites to alkali metal, which would also maintain high NO<sub>x</sub> storage [12]. In accordance with the broadly accepted storage model, i.e., the nitrites/nitrates route [12,40,41], nitrites are progressively transformed into barium nitrates during NO+O2 admission with Pt participation [41]. The same behaviour was observed for a Pt-Ca/Al<sub>2</sub>O<sub>3</sub> catalyst [42], and BaO/Al<sub>2</sub>O<sub>3</sub> and Pt-BaO/Al<sub>2</sub>O<sub>3</sub> catalysts [43]. Small Pt particles can be beneficial for NO<sub>x</sub> storage in terms of Pt and the NO<sub>x</sub> storage component proximity. However, a too high Pt dispersion is not always desirable for NSR reactivity, since smaller Pt crystallites are more easily oxidized relative to bigger ones in the presence of O2, and although the overall conversion may increase with better dispersion, on a per exposed atom basis (TOF) NO oxidation will decrease [13].

#### 3.2. Catalytic performance study

 $NO_X$  storage–reduction over the Pt-Ba<sub>ST</sub>, Pt-Ba/Al<sub>NF</sub>, Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> catalysts was studied at room temperature, 523, 623, 723 and 773 K, and results obtained over several cycles at

623 K are shown in Fig. 4. These experiments were carried out under H<sub>2</sub>O- and CO<sub>2</sub>-free conditions to estimate the potential accumulation capacity and NO oxidation over the standard and modified catalyst structures. The results were obtained after conditioning the catalyst at the same temperature with 5 adsorption-reduction cycles. A CO<sub>2</sub> signal was not observed, suggesting that either the BaCO<sub>3</sub> phase was fully decomposed during conditioning, leaving BaO and Ba $(OH)_2$  on the surface [13], or that some remained stable, but did not take part in the reaction, i.e. any BaCO<sub>3</sub> was unreactive under the conditions tested. For Pt-Ba<sub>ST</sub>, upon NO admission to the lean phase at t = 0 min, a dead time in NO outlet concentration was observed, indicating that all inlet  $NO_x$  during that time was completely stored on the catalyst surface. After ca. 0.7 min the NO<sub>x</sub> outlet concentration began gradually increasing with time, ultimately reaching the inlet concentration value of 1000 ppm at the end of the 30-min lean/adsorption phase. The NO<sub>2</sub> concentration gradually increased with time and at the end of the cycle was ca. 320 ppm. Compared to Pt-Ba<sub>ST</sub>, different NO<sub>2</sub> outlet concentrations were detected for Pt-Ba/Al<sub>NF</sub>, Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> at the end of lean phase; 390, 45 and 160 ppm, respectively (Fig. 4b-d). For the Pt-Ba/Al-Ti sample, this low NO oxidation activity can be related to the Pt-TiO<sub>2</sub> electron interaction as was pointed out previously [44]. It was found that a Pt-TiO<sub>2</sub> catalyst prepared by impregnation contains Pt metallic species and PtO, which is less active than metallic Pt, so exhibits low NO oxidation activity. Additionally, small Pt clusters on TiO<sub>2</sub> with weak Pt-TiO<sub>2</sub> electron interaction are easily oxidized during reaction under oxidizing conditions, leading to a decrease in NO oxidation activity [45]. Considering the Pt-Ba/Al-Ti<sub>MF</sub> physical mixture, the Pt-TiO<sub>2</sub> electron interaction is expected to be weaker compared to that for Pt-Ba/Al-Ti. Because of that, the NO oxidation activity is greater for Pt-Ba/Al-Ti<sub>MF</sub> compared to Pt-Ba/Al-Ti. Although the Pt-Ba/Al<sub>NF</sub> sample had the highest dispersion, it also resulted in the best NO oxidation activity. This simply indicates that the higher level of Pt exposed led to a higher rate, although the TOF would be smaller [13].

The NO breakthrough time for both the Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> catalysts also decreased, to less than 10-15 s. In the case of Pt-Ba/Al<sub>NF</sub> the NO breakthrough time increased by ca. 20% compared to Pt-Bast. It is well known that NO to NO<sub>2</sub> oxidation plays a key role for  $NO_x$  storage [11,13] and the changes in breakthrough time correlate well to the NO oxidation ability of the catalysts. The higher the NO<sub>2</sub> outlet concentration at the end of the lean phase, the longer the storage occurred. It is also possible that the different overall performances, as well as the NO oxidation ability, are due to different crystallinity and dispersion states of the Ba phase. In the case of Pt-Ba/Al-Ti, large crystals of Ba(NO<sub>3</sub>)<sub>2</sub> form the large BaCO<sub>3</sub> crystals shown in Fig. 2, and the large nitrate crystals were also observed with TEM after reaction as well (data not shown), which can evoke NO<sub>x</sub> diffusion/mobility difficulty during storage. For Pt-Ba/Al<sub>NF</sub>, the Ba phase is more dispersed and could form smaller crystallites, which is beneficial for  $NO_x$  storage capacity [46,47].

At 623 K, Pt-Ba/Al<sub>NF</sub> had the highest accumulation capacity of the samples tested. The amounts of stored nitrates at 623 K for Pt-Ba<sub>ST</sub>, Pt-Ba/Al<sub>NF</sub> and Pt-Ba/Al-Ti were  $1.26 \times 10^{-3}$ ,  $1.57 \times 10^{-3}$  and  $9.93 \times 10^{-4}$  mol  $g_{cat}^{-1}$ , respectively. For the physical mixture, Pt-Ba/Al-Ti<sub>MF</sub>, the amount of NO<sub>x</sub> stored was ca.  $1.17 \times 10^{-3}$  mol  $g_{cat}^{-1}$ , and falls between the values obtained for Pt-Ba/Al<sub>NF</sub> and Pt-Ba/Al-Ti. These values were estimated taking into account that the amount of stored nitrates is proportional to the area  $A_1$  in Fig. 4.

In terms of regeneration, also in Fig. 4, for Pt-Ba<sub>ST</sub>  $H_2$  was completely consumed for about 3 min after its introduction at t = 25 min. Then the  $H_2$  outlet concentration gradually increased with time, reaching the inlet value at the end of the rich step at ca. 55 min.  $N_2$  was observed at the onset of the rich phase, suggesting fast reduction of stored nitrites/nitrates.  $H_2$ O was also observed at the onset of the regeneration phase, via reaction between  $H_2$  and the stored  $NO_X$ 

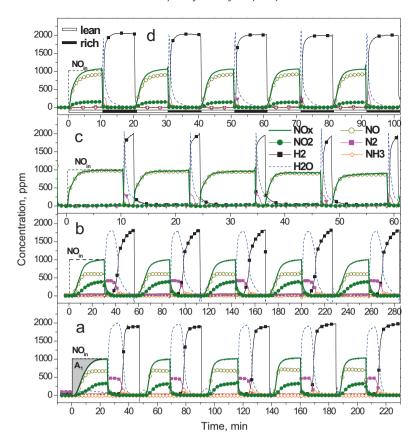



Fig. 4. Storage-reduction of  $NO_x$  at 623 K for (a) Pt-Ba<sub>2</sub>(b) Pt-Ba/Al<sub>NF</sub>, (c) Pt-Ba/Al-Ti and (d) the physical mixture of Pt-Ba/Al-Ti<sub>MF</sub>. Lean phase – 1000 ppm  $NO_x$  + 3% of  $O_2$  in He; regeneration phase – 2000 ppm  $H_2$  in He. Gas flow = 100 ml min<sup>-1</sup>.

species. After 38 min, while N<sub>2</sub> and H<sub>2</sub>O concentrations decreased and H<sub>2</sub> approached the inlet concentration, NH<sub>3</sub> was observed, ca. 130 ppm at its peak. Complete H<sub>2</sub> consumption over both Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> catalysts was shorter compared to Pt-Ba<sub>ST</sub> and Pt-Ba/Al<sub>NF</sub>; less than 0.5 min, and shorter H<sub>2</sub>O formation times were also noted, which are expected since less NO<sub>x</sub> was stored during the previous lean phase for Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub>. N<sub>2</sub> production was still immediate after switching to rich conditions over these catalysts as well, indicating rapid nitrite/nitrate reduction. NH3 was not detected for Pt-Ba/Al-Ti. For the physical mixture, Pt-Ba/Al-Ti<sub>MF</sub>, the amount of NH<sub>3</sub> was ca. 25 ppm and was smaller than that obtained over the Pt-Ba/Al<sub>NF</sub> catalyst, which was ca. 95 ppm. NH<sub>3</sub> is formed via a reaction between the surface NO<sub>x</sub> species and the entering  $H_2$ . Since less  $NO_x$  was trapped on the Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> samples, less NH<sub>3</sub> will ultimately be generated and due to the small amount of NO<sub>x</sub> trapped on Pt-Ba/Al-Ti, none was observed. The nanofiber-supported sample led to less NH<sub>3</sub> generation, although more NO<sub>x</sub> was trapped, demonstrating better selectivity toward N<sub>2</sub> formation.

In Fig. 5 the performance at different temperatures are shown for the Pt-Ba<sub>ST</sub>, Pt-Ba/Al<sub>NF</sub>, and Pt-Ba/Al-Ti catalysts. For all studied materials, NO to NO<sub>2</sub> oxidation increased with increasing reaction temperature (data listed in Table 2). This increase in oxidation capacity is especially obvious when comparing the Pt-Ba<sub>ST</sub> and Pt-Ba/Al<sub>NF</sub> performance at 523 and 623 K.

For standard Pt-Ba<sub>ST</sub>, the trapping efficiency increased between 523 and 623 K. At higher temperatures, the amount of  $NO_x$  stored slightly decreased and starting at 623 K,  $NO_x$  release at the onset of the rich phase was observed, indicating that the nitrites/nitrates stability became significant. It has been proposed that the  $NO_x$  released at the onset of regeneration can be related to heat generation during oxidation of the reductant species, if enough reductant

is present (thermal release) [48,49] and/or the thermodynamic stability of nitrates, which decreases in a net reducing environment [50]. Ammonia production was highest at 523 K, ca. 280 ppm was the peak amount, and its formation decreased as reaction temperature increased, which is consistent with the literature [48,51]. The amount of NO<sub>x</sub> trapped over the Pt-Ba/Al<sub>NF</sub> catalyst is higher at all temperatures tested compared to the Pt-Ba<sub>ST</sub> standard catalyst. Moreover, there was no evidence of NO<sub>x</sub> release at the onset of, or any time during, the rich phase. Also the amount of NH<sub>3</sub> produced is consistently lower relative to that made over the standard Pt-Bast. For example, at 523 K the amount of NH3 formed over the Pt-Ba/Al<sub>NF</sub> catalyst is ca. 40% lower than that obtained with Pt-Ba<sub>ST.</sub> As with Pt-Ba<sub>ST</sub>, NH<sub>3</sub> formation over Pt-Ba/Al<sub>NF</sub> decreased with temperature. These results are in line with literature data, where decreased NH<sub>3</sub> formation with increasing temperature has been related to lower nitrite/nitrate species stability, such that the released NO<sub>x</sub>:reductant ratio is too high for substantial NH<sub>3</sub> formation. Also, taking into account NO- or N-species adsorbed onto Pt reacting with H<sub>2</sub>, more NH<sub>3</sub> would form during regeneration at

**Table 2** NO<sub>2</sub> concentration at the end of the lean phase (1000 ppm NO<sub>x</sub> + 3% O<sub>2</sub> in He).

| Temperature (K) | NO <sub>2</sub> out (ppm) |                        |             |                           |  |
|-----------------|---------------------------|------------------------|-------------|---------------------------|--|
|                 | Pt-Ba <sub>ST</sub>       | Pt-Ba/Al <sub>NF</sub> | Pt-Ba/Al-Ti | Pt-Ba/Al-Ti <sub>MF</sub> |  |
| RT              | <10                       | <10                    | <10         | <10                       |  |
| 523             | 35                        | 45                     | 20          | 35                        |  |
| 623             | 320 (60)                  | 390 (75)               | 45 (<10)    | 160 (35)                  |  |
| 723             | 320                       | 350                    | 65          | 170                       |  |
| 773             | 320                       | 340                    | 80          | 155                       |  |

() in brackets –  $NO_2$  out ppm in the presence of  $H_2O$  and  $CO_2$  during TRM. Both lean and rich phases contained 2.5%  $H_2O$  and 5%  $CO_2$ .

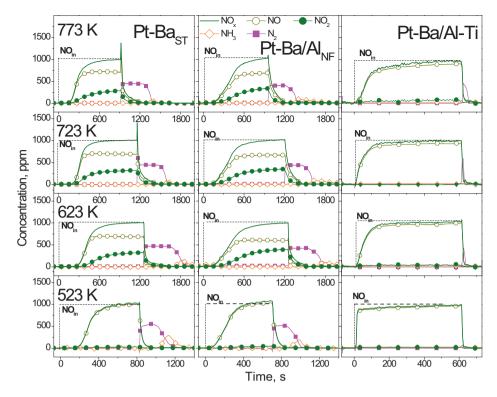
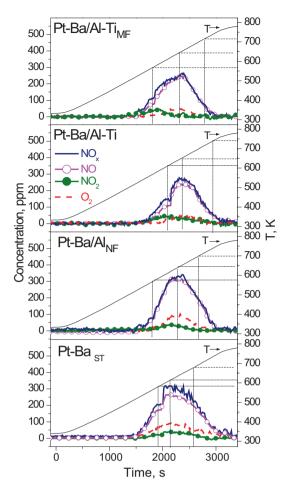



Fig. 5. NO<sub>x</sub> concentration profiles at different temperatures. Lean phase – 1000 ppm NO+3% O<sub>2</sub> in He; regeneration phase – 2000 ppm H<sub>2</sub> in He. Gas flow = 100 ml min<sup>-1</sup>.

lower temperature because more  $NO_x$  species are available over a longer period of time due to slower diffusion rates between the nitrate sites and Pt. Additionally, the ratio of  $H_2$  fed to  $NO_x$  stored has an important effect on selectivity to  $N_2$  and  $NH_3$  [48,51]. For Pt-Ba/Al-Ti, the trapping efficiency at 523 K is poor. The amount of  $NO_x$  trapped increased with temperature, at least up to 773 K. During the rich phase, no  $NO_x$  release was detected and  $NH_3$  was produced only at 523 K, and was less than 10 ppm at its peak, due to the small amount of  $NO_x$  trapped.

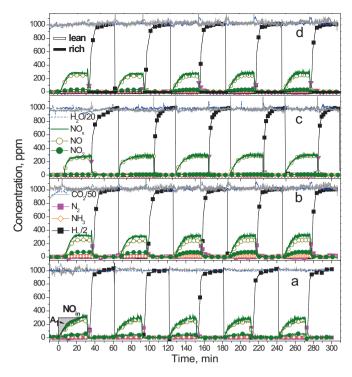

The TRM data demonstrate that the addition of Ti to the support significantly influences the general  $NO_x$  storage and reduction behaviour, significantly decreasing the storage capacity and therefore resulting in poorer performance. The Pt-Ba/Al<sub>NF</sub> catalyst has better performance than the other catalysts in terms of  $NO_x$  removal at all temperatures evaluated.

The good Pt dispersion obtained for the Pt-Ba/Al<sub>NF</sub> system implies closer proximity of Pt to the storage components. The beneficial influence of such a proximal configuration on NO<sub>x</sub> storage has been described elsewhere [12,13]. Additionally, Pt-Ba/Al<sub>NF</sub> has a higher Pt and Ba exposed amount than Pt-Ba/Al-Ti and Pt-Ba<sub>ST</sub> (Table 1). For Pt-Ba/Al<sub>NF</sub>, BaO or Ba(OH)<sub>2</sub> are probably the most abundant storage species. BaCO<sub>3</sub> was almost negligible (small XRD features, no CO<sub>2</sub> evolved during regeneration), because this phase was likely decomposed during catalyst conditioning. In the case of Pt-Ba/Al-Ti, BaO or Ba(OH)2 are still likely storage species at temperatures below 873 K, due to the absence of CO<sub>2</sub> evolved during reaction. When exposing Pt-Ba/Al-Ti to higher temperatures (873–1223 K), Ba-Ti complex structures can form, such as  $Ba_x Ti_v O_z$ , and/or  $Ba_xAl_vTi_zO_n$ , and this interaction can play an important role [39]. It was previously found for ternary oxides, that the TiO<sub>2</sub> domains have a significant affinity toward BaO and/or Ba(NO<sub>3</sub>)<sub>2</sub> resulting in strong Ti-Ba interactions and the formation of overlapping domains on the surface [39]. The presence of Ti can also induce a decrease in the decomposition temperature of the Ba(NO<sub>3</sub>)<sub>2</sub> phase with respect to the Ti-free Ba(NO<sub>3</sub>)<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> system. Such a destabilization was attributed to a weaker interaction between Ba(NO<sub>3</sub>)<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> domains in the ternary oxide as well as due to the change in the surface acidity in the presence of TiO<sub>2</sub> [39]. It was also previously reported that Ti domains provide strong anchoring sites for the Ba-containing units and significantly alter the surface morphology, composition and the stoichiometry of the Ba-containing units as well as the surface mobility of the BaO clusters [52]. In this study, the formation of complex Ba-Al-Ti-O structures was not observed via XRD at temperatures below 873 K and because of that the Pt-Ba/Al-Ti system had some NO<sub>x</sub> storage capacity through the tested temperature range. However, the XRD data indicate that Pt-Ba/Al-Ti seems to have interesting properties from the point of view of thermal durability. The pure Al-Ti nanofibrous support is stable up to ca. 1200 K and when impregnated with Pt and Ba, doesn't show significant textural changes up to ca. 900 K. Although the catalyst supported Al-Ti nanofiber had a lower BET surface area compared with pure Al<sub>NF</sub>, it partially preserves its porous structure even after the thermal treatment at ca. 1200 K.

In Fig. 6 the TPD profiles of stored nitrite/nitrate decomposition products are shown. The temperatures where a desorption maximum occurred for each catalyst are listed in Table 3. Note, the sharp increase noted at approximately 2100 and 2000 s in the 2nd and bottom plots are due to instrument data acquisition speed "missing" the transition to the increased concentration value. The

**Table 3**Desorption temperatures of N- and S-species (sh – shoulder).

| Catalyst                  | Nitrates desorption temperature (K) | Desulfurization temperature (K)      |
|---------------------------|-------------------------------------|--------------------------------------|
| Pt-Ba <sub>ST</sub>       | 590 (sh), 620, 670<br>(sh)          | 777 (sh), 873,<br>930 <sub>SO2</sub> |
| Pt-Ba/Al <sub>NF</sub>    | 570 (sh), 639, 695<br>(sh)          | 730 (sh), 812, 910                   |
| Pt-Ba/Al-Ti               | 609 (sh), 650, 730 (sh)             | 730 (sh), 850                        |
| Pt-Ba/Al-Ti <sub>MF</sub> | 570 (sh), 649, 715 (sh)             | 730 (sh), 830, 910                   |

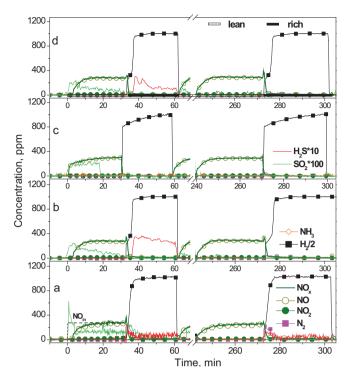



**Fig. 6.** He TPD after a lean phase of a TRM experiment. Heating rate =  $10 \, \text{K} \, \text{min}^{-1}$ . Gas flow =  $100 \, \text{ml} \, \text{min}^{-1}$ .

thermal evolution of the stored  $NO_x$  species on the surface of Pt-Ba/Al<sub>NF</sub> shows one major desorption feature with two shoulders. The  $NO_x$  desorption maximum is at 639 K and the first shoulder is ca. 570 K while the second small shoulder is observed at 695 K. The desorption features observed above 600 K are associated most probably with the decomposition of bridging and bidentate nitrates [52]. Although the thermal stabilities of the sorbed  $NO_x$  species are similar for Pt-Ba<sub>ST</sub> and Pt-Ba/Al<sub>NF</sub>, there was no release of unreduced  $NO_x$  observed for Pt-Ba/Al<sub>NF</sub>, indicating that the reduction process over Pt-Ba/Al<sub>NF</sub> is more efficient, likely due to the better dispersion obtained with the higher initial surface area.

The thermal stability of the adsorbed  $NO_X$  species was found to be in good agreement with literature. Previous studies indicate that the presence of  $TiO_2$  (rutile) crystallites on the surface of the alumina particles significantly influence the nature of the adsorbed  $NO_X$  species by providing additional  $Ti^{4+}$   $NO_X$  storage sites [52]. The large  $TiO_2$  crystallites can partially block some of the accessible  $Al^{3+}$  surface sites. Moreover, the BaO domains possess a lower surface area [52]. A lower temperature feature at 389 K, related to the desorption of weakly bound  $N_2O_3$  and  $NO^+$  species that desorb in the form of  $NO_2$  and  $NO+O_2$  [52], was not observed during this study. This peak has been attributed to the N-species stored on the alumina support. Its absence is likely due to the alumina surface of Pt-Ba/ $Al_{NF}$  and Pt-Ba/Al-Ti being partially blocked.

For the Pt-Ba/Al-Ti catalyst, all the desorption features are at higher temperatures relative to the other catalysts. The high temperature desorption feature, the shoulder at ca. 730 K, can be assigned to the decomposition of the bulk Ba-nitrates and nitrate



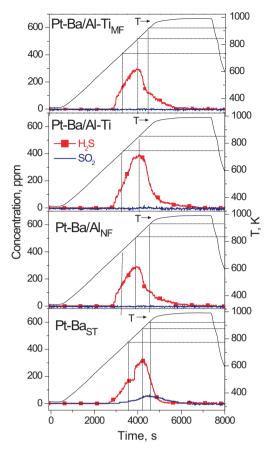

**Fig. 7.** Water and  $CO_2$  influence on  $NO_x$  storage–reduction at 623 K for (a) Pt-Ba<sub>ST</sub>, (b) Pt-Ba/Al<sub>NF</sub>, (c) Pt-Ba/Al-Ti and (d) the physical mixture of Pt-Ba/Al-Ti<sub>MF</sub>. Lean phase – 300 ppm  $NO_x$  + 3%  $O_2$  in He; regeneration phase – 2000 ppm  $H_2$  in He. Each phase contained 2.5%  $H_2O$  and 5%  $CO_2$ . Gas flow = 100 ml min<sup>-1</sup>.

species associated with Ti [52]. Evidence from a previous study also shows a peak at ca. 900–930 K, which is due to decomposition of Ba-nitrates located on the surface of TiO<sub>2</sub> [52]. Both of these nitrate species decompose by releasing mostly NO. According to this previous study, this thermal stabilization of the bulk Ba-nitrates and their decomposition at higher temperatures can be explained by the stronger interaction between the bulk BaO domains and the underlying Ti sites, where large BaO clusters are immobilized on the TiO<sub>2</sub>/TiO<sub>x</sub> domains, and apparently the Ti stabilizes the other features as well.

#### 3.3. $H_2O$ and $CO_2$ influence

The influence of H<sub>2</sub>O and CO<sub>2</sub> on the Pt-Ba<sub>ST</sub>, Pt-Ba/Al<sub>NF</sub>, Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> catalysts' behaviour was investigated and results obtained at 623 K are presented in Fig. 7. Compared to "clean" conditions (without  $H_2O$  and  $CO_2$ ), Fig. 4, the  $NO_X$  breakthrough time is shorter in the presence of H<sub>2</sub>O and CO<sub>2</sub>, indicating that NO<sub>x</sub> is stored more efficiently in the absence of both H<sub>2</sub>O and CO<sub>2</sub>. This is in good agreement with previous studies, where the combined effect of H<sub>2</sub>O and CO<sub>2</sub> on the storage of Pt/Ba/Al<sub>2</sub>O<sub>3</sub> catalysts has been investigated [53-55]. For Pt-Ba<sub>ST</sub> the total uptake of NO<sub>x</sub> time is ca. 0.7 min for "clean" conditions, while in the presence of H<sub>2</sub>O and CO<sub>2</sub> it decreases to ca. 0.4 min. Additionally, the NO oxidation activity is influenced and at the end of the lean phase the amount of NO<sub>2</sub> was ca. 60-70 ppm (Table 2). A smaller effect on catalytic activity was observed for the Pt-Ba/Al<sub>NF</sub>, where the amount of  $NO_x$  stored decreased by ca. 28% compared to the amount trapped in the absence of H<sub>2</sub>O and CO<sub>2</sub>. A partial loss of NO oxidation activity for this catalyst was also detected. In general, the decrease in catalytic activity due to H<sub>2</sub>O and CO<sub>2</sub> presence is: Pt-Ba<sub>ST</sub> > Pt-Ba/Al-Ti > Pt-Ba/Al-Ti<sub>MF</sub> > Pt-Ba/Al<sub>NF</sub>. It is worth noting that at 623 K,  $NH_3$ formation was not observed during the rich phase, which is consistent with previous findings, where it was suggested that CO<sub>2</sub>




**Fig. 8.** NO<sub>x</sub> storage–reduction at 623 K for sulfated catalysts (first and last TRM cycle); (a) Pt-Ba<sub>ST</sub>, (b) Pt-Ba/Al<sub>NF</sub>, (c) Pt-Ba/Al-Ti and (d) the physical mixture of Pt-Ba/Al-Ti<sub>MF</sub>. Lean phase – 1000 ppm NO<sub>x</sub> + 3% O<sub>2</sub> in He; regeneration phase – 2000 ppm H<sub>2</sub> in He. Each phase contained 2.5% H<sub>2</sub>O and 5% CO<sub>2</sub>. Gas flow = 100 ml min<sup>-1</sup>.

has a promoting effect on  $NH_3$  formation only at low temperatures (lower than 573 K) [55].

Previous studies have shown that in the presence of  $H_2O$  and  $CO_2$ , hydroxide and carbonate catalyst storage species are formed [56–58]. Therefore, the proposed explanation for the lower storage capacity in the presence of  $H_2O$  and  $CO_2$  is that  $NO_x$  storage is more difficult on  $BaCO_3$  and  $Ba(OH)_2$  than on BaO [55]. It has also been shown that  $CO_2$  has a greater influence on storage relative to  $H_2O$  [55], which was related to the greater stability of  $BaCO_3$  compared to  $Ba(OH)_2$ , resulting in more difficult nitrite/nitrate formation from  $BaCO_3$ .

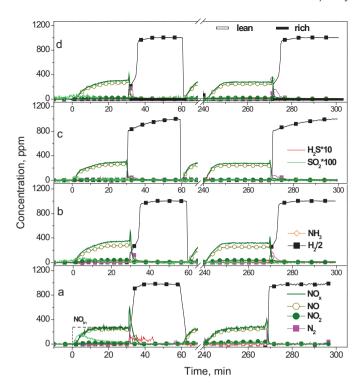
# 3.4. Sulfur poisoning study

The effects of the nanofibrous support structure and Ti incorporation in the Al phase on sulfur adsorption suppression, and NO<sub>x</sub> storage afterwards, were studied over the Pt-Ba/Al<sub>NF</sub>, Pt-Ba/Al-Ti and Pt-Ba/Al-Ti<sub>MF</sub> catalysts, and the results were compared with those obtained from the standard Pt-Ba catalyst. All performance tests of the S-poisoned and desulfurized catalysts were performed in the presence of 2.5% H<sub>2</sub>O and 5% CO<sub>2</sub>, except the sulfation portion itself, as both of these compounds can promote desulfurization [59]. The storage-reduction profiles at 623 K after sulfation are shown in Fig. 8. The results clearly show that after sulfation, the first adsorption-reduction cycle is significantly perturbed relative to those shown in Figure 7. During the first adsorption phase, SO<sub>2</sub> was released from all samples, whereas H<sub>2</sub>S formation was observed during the first regeneration phase for the Pt-Ba/Al<sub>NF</sub> and Pt-Ba/Al-Ti<sub>MF</sub> catalysts. For all catalysts, NO<sub>x</sub> removal activity decreased compared to the corresponding un-sulfated systems. The NO breakthrough time dropped 48-67% and the NO to NO<sub>2</sub> oxidation extents were also inhibited. The NO<sub>x</sub> conversion over all of the sulfated catalysts increased slowly with time (number of cycles), which indicates that the catalyst active centres can be to some extent



**Fig. 9.** TPR/desulfurization with 2000 ppm  $H_2$  + 2.5%  $H_2O$  + 5%  $CO_2$  in He. Total flow = 100 ml min<sup>-1</sup>. T ramp = 10 K min<sup>-1</sup>.

recuperated at 623 K under normal, cycling conditions. However, there is only a moderate level of activity re-attained after 300 min or after 5 cycles. The amounts of stored nitrates at 623 K for sulfated Pt-Ba<sub>ST</sub>, Pt-Ba<sub>I</sub>Al<sub>NF</sub> and Pt-Ba<sub>I</sub>Al-Ti were  $5.08 \times 10^{-4}$ ,  $7.69 \times 10^{-4}$  and  $5.67 \times 10^{-4}$  mol  $g_{cat}^{-1}$ , respectively, and are all slightly higher than previously reported values for a standard Pt/Ba<sub>I</sub>Al<sub>2</sub>O<sub>3</sub> catalyst [50].


Moreover, a small release of unconverted  $NO_x$  at the onset of regeneration for all sulfated catalysts was detected. The highest amount of unconverted  $NO_x$  was released from the standard Pt-Ba<sub>ST</sub>. The highest decrease in overall activity, ca. 37% was obtained from the standard catalyst as well. The Ti-modified catalysts actually perform better than the standard after this S exposure. This could be due to Ba sites associated with Ti being affected less significantly than Ba not associated with Ti.

The data obtained during the TPR used for desulfurization are shown in Fig. 9 and temperatures where a S-species desorption maximum occurred for each catalyst are given in Table 3.  $H_2$  was used as the reducing agent, and is known to promote sulfur desorption [3]. The temperature for the onset of S release was similar for each catalyst. For the sulfated Pt-Bast standard catalyst,  $H_2S$  and  $SO_2$  are both observed, with maxima in desorption noted at ca. 773 and 873 K for  $H_2S$  and 930 K for  $SO_2$ . Sulfur removal can be explained on the basis of reactions (1) and (2) or reaction (1) with the product  $SO_2$  further reacting with  $H_2$  to form  $H_2S$ .

$$BaSO_4 + H_2 \rightarrow BaO + SO_2 + H_2O \tag{1}$$

$$BaSO_4 + 4H_2 \rightarrow BaO + H_2S + 3H_2O$$
 (2)

Pt promotes both reactions and lowers the desorption temperature [3].



**Fig. 10.** TRM profiles at 623 K for the desulfurized catalysts (first and last TRM cycle); (a) Pt-Ba<sub>2</sub>(b) Pt-Ba<sub>2</sub>(c) Pt-Ba<sub>2</sub>(Al-Ti and (d) the physical mixture of Pt-Ba<sub>2</sub>(Al-Ti<sub>MF</sub>. Lean phase – 1000 ppm NO<sub>x</sub> + 3% O<sub>2</sub> in He; regeneration phase – 2000 ppm H<sub>2</sub> in He. Each phase contained 2.5% H<sub>2</sub>O and 5% CO<sub>2</sub>. NO<sub>x</sub> = NO + NO<sub>2</sub>. Gas flow 100 ml min<sup>-1</sup>.

Significant SO<sub>2</sub> formation was observed only for Pt-Ba<sub>ST</sub>. For the nanofibrous material, H<sub>2</sub>S desorption was predominant at temperatures above 673 K and SO<sub>2</sub> formation was negligible, less than 5 ppm. For the Pt-Ba/Al-Ti catalyst, the amount of H<sub>2</sub>S desorbed was noticeably higher than that from the other catalysts investigated. This indicates that Ti incorporation into the alumina nanofiber structure either results in more S adsorbed during the sulfation process or catalyzes the release of S as H<sub>2</sub>S. TiO<sub>2</sub> is known to be resistant to sulfur poisoning, because sulfates on TiO2 are less stable than those on other oxides, such as  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> [24,25,39], possibly due to acidity differences [[25] and references therein] or the interaction between the Ti and Ba, forming overlapping domains as discussed above [50]. This better sulfur tolerance was also observed previously for TiO<sub>2</sub> supports and TiO<sub>2</sub> mixed with γ-Al<sub>2</sub>O<sub>3</sub> [3,7] and it has been reported that Pt/TiO<sub>2</sub> mixed with Pt-Ba/Al<sub>2</sub>O<sub>3</sub> shifts sulfur desorption to lower temperatures. Additionally, H<sub>2</sub>S desorbs more easily at lower temperature in the vicinity of the interface where Pt/TiO<sub>2</sub> and sulfur poisoned Pt-Ba/Al<sub>2</sub>O<sub>3</sub> are in contact [7]. This facilitation of sulfur desorption is therefore a function of an increase in interfacial contact between Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> [7]. Accordingly, the prepared nanofibrous material containing Ti seemingly results in high contact between the two interfaces and it is the release of S that is increased.

In Fig. 10, the TRM profiles obtained after desulfurization are displayed. The first lean-rich TRM cycle was significantly changed for all cases. For the desulfurized catalysts, the NO breakthrough time is higher and the amount of  $NO_x$  stored increased compared to the corresponding sulfated systems. Also, the NO to  $NO_2$  oxidation ability improved after desulfurization, by 15-20%. The total amounts of  $NO_x$  stored before and after sulfation as well as after desulfurization for each catalyst are shown in Fig. 11. The N balances are within 4-7%. The best performance after desulfurization was obtained for the nanofibrous Pt-Ba/Al<sub>NF</sub> and Pt-Ba/Al-Ti systems (data listed in Table 4).

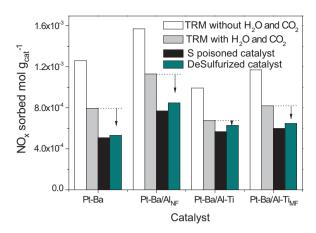



Fig. 11.  $NO_x$  storage over fresh (with and without  $H_2O$  and  $CO_2$ ), sulfated and desulfurized catalysts.

**Table 4** Catalyst activity recovery after sulfation and desulfurizarion ( $A_{DES}$ ) in H<sub>2</sub>.

| Catalyst                  | $A_{ m DES}$ | $A_{DES^*}$ |
|---------------------------|--------------|-------------|
| Pt-Ba <sub>ST</sub>       | 0.97         | 0.92        |
| Pt-Ba/Al <sub>NF</sub>    | 0.90         | 0.78        |
| Pt-Ba/Al-Ti               | 0.86         | 0.44        |
| Pt-Ba/Al-Ti <sub>MF</sub> | 0.91         | 0.78        |

 $A_{DES} = (NO_{ads} - NO_{ads} D_{ES})/(NO_{ads} - NO_{ads} SULF), \\ A_{DES} = (NO_{ads} - NO_{ads} D_{ES})/(NO_{ads} - NO_{ads} SULF), \\ NO_{ads} = (NO_{ads} NO_{ads} NO_{ads} - AD_{ads} NO_{ads} - AD_{ads} NO_{ads} - AD_{ads} NO_{ads} NO_{ads} - AD_{ads} NO_{ads} NO_{a$ 

Interestingly, SO<sub>2</sub> and H<sub>2</sub>S were still observed being released over the previously desulfurized catalysts (Fig. 10). SO2 release during the storage phase is observed mostly for Ti-free systems, indicating that some residual S-species are present on the Pt-Bast and Pt-Ba/Al<sub>NF</sub> catalyst surfaces after desulfurization and that the added NO<sub>x</sub> and O<sub>2</sub> presumably induces some release that did not occur under the reducing TPR conditions. In this context, Ti presumably increases sulfur desorption, which is in agreement with the data discussed above as well as previous work [7]. However, there is also a noticeable increase in unconverted NO<sub>x</sub> release after the TPR protocol. After desulfurization the highest amount of unconverted NO<sub>x</sub> was released with Pt-Ba<sub>ST</sub>  $(1.42 \times 10^{-6} \text{ mol g}_{cat}^{-1})$  and Pt-Ba/Al<sub>NF</sub> resulted in less  $(2.84 \times 10^{-7} \text{ mol g}_{cat}^{-1})$ , but more than prior to the TPR. Moreover, for those catalysts, the highest decrease in overall activity is obtained, i.e. 33 and 25% for Pt-BaST and Pt-Ba/Al<sub>NF</sub>, respectively. For Pt-Ba/Al-Ti, the amount of unconverted  $NO_x$  is almost negligible  $(5.61\times 10^{-8}\,mol\,g_{cat}^{-1})$  and for Pt-Ba/Al- $Ti_{MF}$  the amount of unconverted  $NO_x$  (1.09 × 10<sup>-7</sup> mol  $g_{cat}^{-1}$ ) falls between those obtained for Pt-Ba/Al<sub>NF</sub> and Pt-Ba/Al-Ti. H<sub>2</sub>S release was observed during the rich phase for Pt-Bast in the first TRM cycle, but was not for the other catalysts.

The  $NO_x$  storage–reduction tests with the desulfurized catalysts reveal that the  $NO_x$  storage capacity was higher for the nanofibrous alumina and Al-Ti supported catalysts compared to standard Pt-Ba, further suggesting that sulfur desorption was promoted over those catalysts, resulting in better recovered performance.

# 4. Conclusions

Different  $NO_x$  storage catalysts deposited on nanofibrous supports were prepared, with comparison also made to a model NSR catalyst. The modification of the nanofibrous  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> structure by Ti negatively affected  $NO_x$  storage properties but enhanced the

thermal durability and S resistance.  $NO_x$  storage increased with temperature, up to 773 K with the addition of Ti, while for the other samples, trapping ability decreased at this high temperature relative to lower temperatures. This was due to the availability of additional  $NO_x$  adsorption sites associated with the Ti or Ba/Ti interactions. The Pt-Ba catalyst supported on pure nanofibrous  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> had the best results at temperatures below 723 K. This sample also resulted in the best NO oxidation performance, likely leading to the improved trapping ability, although its better dispersion of both Pt and Ba sites also leads to improved performance. S exposure affected both  $NO_x$  storage and unconverted  $NO_x$  release during the regeneration phase. The Ti-modified sample released more sulfur during TPR than the others indicating enhanced contact between  $Al_2O_3$  and  $TiO_2$ .

#### Acknowledgments

The authors wish to thank the Spanish Ministry of Education (MEC) for the FPI grant, projects CTQ2006-09780 and CTQ2009-10649 and Canada Foundation for Innovation for the equipment grant.

## Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.cattod.2011.02.045.

#### References

- [1] Y. Huang, Q. Lu, SAE Technical Paper 24-0103 (2007).
- [2] J.H. Kwak, D.H. Kim, J. Szanyi, C.H.F. Peden, Appl. Catal. B 84 (2008) 545.
- [3] S. Matsumoto, Y. Ikeda, H. Suzuki, M. Ogai, N. Miyoshi, Appl. Catal. B 25 (2000) 115.
- [4] W. Muller, W. Strehlau, J. Hoehne, A. Okumura, U. Gobel, E. Lox, M. Hori, SAE Technical Paper 01-1285 (1999).
- [5] F. Rohr, I. Grisstede, A. Sundararajan, W. Mueller, SAE Technical Paper 01-0766
- [6] E. Schreier, R. Eckelt, M. Richter, R. Fricke, Appl. Catal. B (2006) 249.
- [7] H. Hirata, I. Hachisuka, Y. Ikeda, S. Tsuji, S. Matsumoto, Top. Catal. 16/17 (2001) 145.
- [8] K. Yamazaki, T. Suzuki, N. Takahashi, K. Yokota, M. Sugiura, Appl. Catal. B 30 (2001) 459.
- [9] J.A. Anderson, Z. Liu, M.F. Garcia, Catal. Today 113 (2006) 25.
- [10] P. Forzatti, L. Lietti, Catal. Today 155 (2010) 131.
- [11] L. Lietti, P. Forzatti, I. Nova, E. Tronconi, J. Catal. 204 (2001) 175.
- [12] I.S. Pieta, M. García-Diéguez, M.C. Herrera, M.A. Larrubia, L.J. Alemany, J. Catal. 270 (2010) 256.
- [13] W.S. Epling, L.E. Campbell, A. Yezerets, N.W. Currier, J.E. Parks, Catal. Rev. 46 (2004) 163.
- [14] E. Fridell, M. Skoglundh, B. Westerberg, S. Johansson, G. Smedler, J. Catal. 183 (1999) 196.
- [15] M. Molinier, SAE Technical Paper 01-0508 (2001).
- [16] N. Takahashi, K. Yamazaki, H. Sobukawa, H. Shinjoh, Appl. Catal. B 170 (2007) 198.
- [17] M. Takeuchi, S. Matsumoto, Top. Catal. 28 (2004) 151.

- [18] J.P. Day, W. Cutler, SAE Technical Paper 01-3500 (1999).
- [19] J.R. Theis, J.J. Li, R.G. Hurley, J.A. Ura, SAE Technical Paper 01-0733 (2002).
- [20] D.H. Kim, Y.H. Chin, G.G. Muntean, A. Yezeretz, N.W. Currier, W.S. Epling, H.Y. Chen, H. Hess, C.H.F. Peden, Ind. Eng. Chem. Res. 45 (2006) 8815.
- [21] S. Matsumoto, Catal. Today 90 (2004) 183.
- [22] G.A. Ingram, G. Surnilla, SAE Technical Paper 01-0731 (2002).
- [23] W.E.J.v. Kooten, H.C. Krijnsen, C.M.v.d. Bleek, H.P.A. Calis, Appl. Catal. B 25 (2000) 125.
- [24] H. Mahzoul, P. Gilot, J.-F. Brilhac, B.R. Stanmore, Top. Catal. 16/17 (2001) 293.
- [25] K. Yamamoto, R. Kikuch, T. Takeguchi, K. Eguch, J. Catal. 238 (2006).
- [26] Q. Wang, J.H. Sohn, J.S. Chunk, Appl. Catal. B 89 (2009) 97.
- [27] D.H. Kim, Y.H. Chin, J.H. Kwak, J. Szanyi, C.H.F. Peden, Catal. Lett. 105 (2005)
- [28] T. Szailer, J.H. Kwak, D.H. Kim, J. Szanyi, C.M. Wang, C.H.F. Peden, Catal. Today 114 (2006) 86.
- [29] Q. Wang, J.S. Chung, Appl. Catal. A 358 (2009) 59.
- [30] N. Takahashi, S. Matsunaga, T. Tanaka, H. Sobukawa, H. Shinjoh, Appl. Catal. B 77 (2007) 73.
- [31] I. Hachisuka, T. Yoshida, H. Ueno, N. Takahashi, A. Suda, M. Sugiura, SAE Technical Paper 01-0732 (2002).
- [32] M. García-Diéguez, I.S. Pieta, M.C. Herrera, M.A. Larrubia, I. Malpartida, L.J. Alemany, Catal. Today 149 (2010) 380.
- [33] Z. Zhu, H. Liu, H. Sun, D. Yang, Microporous Mesoporous Mater. 123 (2009) 39.
- [34] J. Dawody, L. Eurenius, H. Abdulhamid, M. Skoglundh, E. Olsson, E. Fridell, Appl. Catal. A 296 (2005) 157.
- [35] J.H. Kwak, D. Mei, C.W.W. Yi, D.H. Kim, C.F. Peden, L. Allard, J. Szanyi, J. Catal. 261 (2009) 17.
- [36] D. Mei, Q. Ge, J.H. Kwak, D.H. Kim, J. Szanyi, C.F. Peden, J. Phys. Chem. C 112 (2008) 18050
- [37] M. Piacentini, M. Maciejewski, A. Baiker, Appl. Catal. B 60 (2005) 265.
- [38] C.L.M. Scholz, B.H.W. Maes, M.H.J.M.d. Croon, J.C. Schouten, Appl. Catal. A 332 (2007) 1.
- [39] S.M. Andonova, G.S. Senturk, E. Kayhan, E. Ozensoy, J. Phys. Chem. C 113 (2009) 11014.
- [40] J.A. Anderson, B. Bachiller-Baeza, M. Fernandez-Garcia, Phys. Chem. Chem. Phys. 20 (2003) 4418.
- [41] H. Mahzoul, J.F. Brilhac, P. Gilot, Appl. Catal. B 20 (1999) 47.
- [42] H.Y. Huang, R.Q. Long, R.T. Yang, Energy Fuel 15 (2001) 205.
- [43] F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, J. Phys. Chem. B 105 (2001) 12732.
- [44] L. Li, Q. Shen, J. Cheng, Z. Hao, Appl. Catal. B 93 (2010) 259.
- [45] Y. Xu, W.A. Shelton, W.F. Schneider, J. Phys. Chem. A 110 (2006) 5839.
- [46] S. Decker, K.J. Klabunde, JACS 118 (1996) 12465.
- [47] J.Y. Luo, M. Meng, Y.Q. Zha, Y. Ning, T.D. Hu, J. Zhang, T. Liu, Appl. Catal. B 78 (2008) 38.
- [48] W.S. Epling, A. Yezerets, N.W. Currier, Appl. Catal. B 74 (2007) 117.
- [49] K.S. Kabin, R.L. Muncrief, M.P. Harold, Catal. Today 96 (2004) 79.
- [50] Z. Liu, J.A. Anderson, J. Catal. 224 (2004) 18.
- [51] P. Forzatti, L. Lietti, N. Gabrielli, Appl. Catal. B 99 (2010) 145.
- [52] S.M. Andonova, G.S. Senturk, E. Ozensoy, J. Phys. Chem. C 114 (2010) 17003.
- 53] W.S. Epling, G.C. Campbell, J.E. Parks, Catal. Lett. 90 (2003) 45.
- [54] W.S. Epling, J.E. Parks, G.C. Campbell, A. Yezerets, N.W. Currier, L.E. Campbell, Catal. Today (2004) 21.
- [55] A. Lindholm, N.W. Currier, E. Fridell, A. Yezerets, L. Olsson, Appl. Catal. B 75 (2007) 78.
- [56] S. Balcon, C. Potvin, L. Salin, J.F. Tempere, G. Djega-Mariadassou, Catal. Lett. 60 (1999) 39.
- [57] F. Rodrigues, L. Juste, C. Potvin, J.F. Tempere, G. Blanchard, G. Djega-Mariadassou, Catal. Lett. 72 (2001) 59.
- [58] T.J. Toops, D.B. Smith, W.S. Epling, J.E. Parks, W.P. Partridge, Appl. Catal. B 58 (2005) 255.
- [59] D.H. Kim, J.H. Kwak, J. Szanyi, X. Wang, M.H. Engelhard, C.H.F. Peden, Top. Catal. 52 (2009) 1719.